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Abstract

We present a new method to describe the dynamics of the beat-to-beat RR time
series. The classification of the phase-space plots obtained from RR time series
is performed by a calculation of parameters which describe the features of the
two-dimensional plot. We demonstrate that every parameter has its specific
consequence on the evaluation of the state of the cardiac function. By applying
the method to the DIAMOND MI study we demonstrate that these parameters
have more prognostic power than previously suggested risk markers. The
results suggest that the RR intervals constitute a highly complex time series
which necessitates the use of refined mathematical—statistical methods in order
to reveal pathologies in the heart rate.

Keywords: heart rate variability, recurrence plot, multipoles, DIAMOND MI
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1. Introduction

Reduced heart rate variability (HRV) is an important prognostic factor predicting sudden
arrhythmic death after acute myocardial infarction (AMI) (Task force of The European Society
of Cardiology 1996, Tapanainen et al 2002, Wessel et al 2000, Kleiger et al 1987, Schwartz
etal 1992, Meyerburg et al 1992, Malik e al 1990, Makikallio et al 1999). Several studies have
demonstrated increased arrhythmic as well as non-arrhythmic mortality in AMI populations
with low HRV. Those studies included traditional methods based on time- or frequency-domain
analysis and newer fractal analysis techniques which are based on time-domain analysis
(Thurner et al 1998a, 1998b, Peng et al 1995, Mikikallio er al 2001, Saermark er al 2000,
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Ashkenazy et al 2001, Wilson er al 2002, Voss et al 1996, Schmidt er al 1999, Wessel et al
2000a).

Two methods have separated themselves exhibiting more prognostic power than the others
in comparative studies. One is the short-term fractal scaling exponent «; which evolved as a
powerful predictor of death in the survivors of AMI (Peng et al 1995). In a comparative study
it was shown that o, is a better predictor of death than the traditional measures of HRV among
patients with AMI and a low wall motion index. It also predicted independently arrhythmic
death which neither of the traditional HRV measures did after adjustment for clinical risk
factors (Huikuri e al 2000).

The other is the multipole method, arecently developed method to describe time series with
a highly complex time evolution computing various parameters (the multipoles) descriptive
of the time series (Lewkowicz et al 2002, Bloch Thomsen et al 2001). In clinical medicine,
the dynamics of the RR time series is commonly represented by the so-called recurrence plot
(Huikuri e al 1996, Kamen er al 1995, 1996, Brennan et al 2002), where each RR interval is
plotted against the previous one. The method replaces the classification of the recurrence plot
by visual inspection with the computation of the various multipoles. The two-dimensional
recurrence plot is interpreted as a two-dimensional body where each data point is assigned
a unit mass; the origin of the coordinate system is chosen in the centre of mass. Therefore
one does not ignore the varying density of data points in the recurrence plots which might
lead to similar contours for different heart dynamics, which has been the major obstacle for
bedside application (Malik 1998). Each of these multipoles constitutes a measure exhibiting
its particular facet for assessing the heart function. It includes, but also extends beyond, the
integrative measures of HRV.

1.1. The DIAMOND MI study

The DIAMOND MI was a randomized double-blind-controlled study of Dofetilide in post-MI
patients (The DIAMOND Study Group 1997). The study included screening of consecutive
patients with left ventricular dysfunction in association with recent myocardial infarction.
It included patients with an acute MI and a left ventricular wall motion index (WMI) <
1.2. A substudy of the DIAMOND MI was designed in order to determine and compare the
prognostic power of traditional HRV measures with those of new fractal measures (Huikuri
et al 2000). HRV was obtained from consecutive RR intervals from 24 h ECG recordings
5-10 days after AMI. Results were reported on 446 patients who fulfilled the criteria for
meaningful RR interval variability analysis. The mortality was 25.6% after a follow-up of
685 + 360 days (114 died). 75 deaths (17%) were classified as arrhythmic and 28 (6.3%) were
classified as non-arrhythmic cardiac deaths.

2. Methods

The present study makes use of four different multipoles: one of the quadrupole moments,
two of the octupole moments and a hexadecapole-related moment.

The quadrupole moment Q, describes the overall distribution of the data points along and
vertical to the diagonal of the recurrence plot. It vanishes for an elliptically shaped distribution
with an axis ratio of 4/2/1, where the data points are Gaussian distributed along the principal
axes.

One of the octupole moments (7., ) expresses the skewness of the two-dimensional body
along the x-axis and the other (7}y,) on the y-axis.
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Table 1. Predictive accuracies of the various HRV measures.

Variable  Highrisk values  Sensitivity ~ Specificity PPA NPA  OPA

Qyy Oy 2-750 64 62 36 8 60
By Kyx < 1.96 69 63 39 8 64
B T 2 05 70 54 35 8 60
Tosy Tyyy > —3.567 69 43 29 80 55
SDNN  SDNN < 65 39 75 34 78 56
LF (n) <55 58 60 36 79 58
HF (In)>55 58 58 335 79 57
LF/HF <16 59 59 34 78 56
CMP;  CMP;>-25 7938 55.4 381 889 65
CMP;  CMPs;>—14 73 64 43 90 67
i @i <0.75 62 73 46 84 65

PPA: positive predictive accuracy, NPA: negative predictive accuracy, OPA: overall predictive
accuracy.

The hexadecapole-related moment we employ is the ratio of the kurtosis along the y-axis
and the kurtosis along the x-axis, k. The kurtosis vanishes for a Gaussian distribution and is
increasingly positive for progressively more peaked distributions.

2.1. Univariate analysis

The outcome variable was death within the follow-up period (685 + 360 days).
For each of the four variables (multipoles) the cut-point which maximizes the sum of
sensitivity and specificity was chosen.

2.2. Multivariate analysis

After fixing the cut-points each variable was considered as a binary one. We used the multiple
logistic regression. The appropriate model assumed that log(p/(1 — p)), where p is the
probability of death, is the linear combination of the four multipole variables and their paired
interactions (products). We used the backward elimination approach, which started with the
model with all four multipole variables and all six interactions and step by step excluded one
of the variables or interactions, which did not significantly improve the goodness-of-fit (the
agreement between the model and the data).

The final model included only effects significant on the standard level of 0.05. In
section 3 we show the odds ratio (i.e. the ratio of the odds of the death in patients with high-
risk values versus low-risk values) and the 95% confidence limits for all the variables in the
final model.

All calculations were performed using SAS 8.12. (SAS Institute, Cary, NC).

3. Results

The dichotomized variables for bad prognosis, i.e. death within the follow-up period, were
defined as Q,, > —750, T, > —25, Tyyy > —3.567 and «ky, < 1.96.

Table 1 compares the sensitivity, specificity and predictive accuracy values of the various
measures: the quadrupole moment Q yy» the hexadecapole moment ratio Kyx, the two octupole
moments Ty, and Ty,,, the combination of the three multipole parameters 7T, 1y, and
kyx (CMP3) as derived by the multivariate analysis and the combination of all four multipole
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Table 2. Ten patients from the DIAMOND MI study with low-risk O, values and elevated risk
kurtosis ratio (<2.5).

Patient  Patient status Qyy Kyx
1 Deceased —1828 197
2 Deceased —1560 2.01
3 Deceased —1797 225
4 Deceased —1856  2.27
5 Deceased —=2101 231
6 Deceased —2637 2.36
7 Alive —1635 2.37
8 Deceased —1525 2.38
9 Deceased —1926 240

10 Deceased —1702 243

1) Deceased —1426 248

parameters (CMP,). The predictive power of these measures is compared with those of the
other, more traditional HRV measures (o1, SDNN, HF, LF and LF/HF) (Huikuri et al 2000).
The final model of the multiple logistic regression included the dichotomized variables:

Kkyx (OR =3.255, 95% CI = (2.020, 5.243))

Tyyy (OR =1.936, 95% CI = (1.196, 3.136))
Tyixx (OR =2.168, 95% CI = (—1.333, —3.525))
(OR: odds ratio, CI: confidence interval).

This combined model of three multipole parameters (CMP;) achieves the sensitivity of 79.8%,
the specificity of 55.4% and an overall predictive accuracy of 65%.

By combining all of the four multipole parameters (CMP,) one obtains an overall
predictive accuracy of 67%.

Table 2 lists ten patients from the DIAMOND MI study which have low-risk Q,, values
but an elevated risk kurtosis ratio (<2.5). The mortality in this group was 90%, remarkably
high relative to the overall mortality of 25.6%.

Figure 1 shows Kaplan—Meier survival curves for the scaling exponent a1, the SDNN and
the combined parameter CMPy.

In order to demonstrate the relevance of the octupoles we include figure 2 which shows
recurrence plots for two of the recordings from the DIAMOND MI study with similar
quadrupoles. Figure 2(a) shows a survivor with the highest concentration of data points
on the positive part of the x-axis (negative octupole), whereas figure 2(b) shows the plot of a
deceased individual with the major part of data points concentrated on the negative part of the
x-axis (positive octupole).

4. Discussion

The series of RR intervals is an excellent example of a non-stationary and non-linear time
series with a very complex behaviour. It seems reasonable to expect that the regulation of the
heart rhythm, which is a very complex mechanism due to its dependence on many subsystems
in the body, can be described optimally only by a method which has a diversity of different
parameters describing partly different behaviours of those subsystems.

The quadrupole moment, although resembling a standard deviation for the two-
dimensional distribution, differs fundamentally from the one-dimensional standard deviation
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Figure 1. Kaplan-Meier survival curves for the DIAMOND MI study: (a) by the fractal scaling
exponent o1 (upper branch oy 2 0.75; lower branch a1 < 0.75), (b) by the SDNN (upper branch
SDNN 2 65 ms; lower branch SDNN < 65 ms) and (c) by the CMPy (upper branch CMP; <

—1.4;

lower branch CMP, > —1.4).

of the RR interval time series, the SDNN, which does not include any time ordering (shuffling
the RR intervals will result in the same value for SDNN). The various multipoles due to
the very construction of the recurrence plot bear intrinsic time dependence and thus convey a
quantification of the cardiac system’s dynamical properties. This explains why Q yy 1 superior
to SDNN as a prognostic indicator.
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Figure 2. Phase-space plots for survivor (a) and non-survivor (b). They have approximately
the same quadrupole moments but different octupole moments. (a) is an example of positive
x-skewness, and (b) is an example of a negative x-skewness.

(This figure is in colour only in the electronic version)

Nevertheless, a low-risk quadrupole, indicating a considerable spread of data points, might
also be obtained by large concentration of data points near the average value (the heart beats
for extended periods with a low variability) together with spots of high density of points far -
away from the average (the heart beating some periods with a very high variability, as typical
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for arrhythmia). This configuration results in a high-risk kurtosis ratio. This combination of
low-risk quadrupole with a high-risk kurtosis ratio appears in the DIAMOND MI study in ten
individuals, listed in table 2.

A similar analysis can be applied to the octupole moments. Two different distributions
with the same mean and the same variance may differ with respect to the position of their
maxima relative to their common mean. Skewness is a quantitative measure of this lack of
symmetry. A distribution with the position of its maximum below the mean is said to be
positively skewed, and vice versa. For a two-dimensional distribution as the RR recurrence
plot, the octupole moments in respect with a principal axis can be connected to the skewness
of the projection of the distribution along this axis. A negative octupole/skewness along
the x-axis implies that the heart beats for extended periods with a low pulse rate (large RR
intervals), while a positive octupole/skewness along the x-axis implies that the heart beats
with a high pulse rate for extended periods.

A high concentration of data points on the negative y-axis (positive y-skewness) indicates
a slow decrease and a fast increase in the heart rate which is a sign of an impaired sympathetic
and/or parasympathetic nervous system. Negative skewness on the y-axis, implying a slowly
increasing and a fast decreasing pulse, is hence one of the indications for a well-functioning
heart function.

The first relevant multipole moment, the quadrupole (the dipole vanishes due to the choice
of the origin), turns out to be a stronger risk indicator than SDNN (overall predictive accuracy
60 versus 56). Combining the other multipoles that were used in this study into a single
measure by a multivariate analysis results in a measure which is a much more potent predictor
than SDNN (65 versus 56) and similar to ;. Combining all four measures results in a predictor
(CMPy) superior to all other predictors used in the DIAMOND MI study (Huikuri et al 2000).

5. Conclusion

The study shows that the multipole method provides more prognostic information on patients
after acute myocardial infarction than previously suggested risk markers.

The method includes all the integrative measures of heart rate variability, but exceeds the
predictive ability of traditional HRV due to the additional dynamic information gained by the
individual moments obtained by expanding the RR recurrence plot.
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